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e Challenges in ELM control via RMP

v’ Less sustainability by small window.
v’ Loss of plasma confinement.

* Real-time pedestal optimization with ELM control

1.0 Standard ELM-free Optimized ELM-free
" |KSTAR #26004 > v" RT adaptive ELM control.
Adaptive control «  Keep ELM-free.
Hog / ‘ 2T m 1 * Recovers confinement (>60%).

» Optimized ELM-free state
One of solutions for existing challenges.

[Optimized ELM-free via adaptive control]
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* Key of successful pedestal optimization

v’ lon pedestal widening 1.0 - .
* In ELM-suppressed state. ELMy with RMP

v' Contribution to adaptive control

e Stronger confinement recovery (>50%)
* Faster control convergence.

» This talk introduces...

- Principle of adaptive control.
- Role of widened ion-pedestal. 0.8 0.9
- Origin of pedestal widening. ¢N

ELM-free with RMP

1.0

[lon pedestal widening in ELM-free state]
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* Adaptive ELM control using RMPs
 Widened ion pedestal and increased pedestal response
 Enhanced pedestal recovery and field amplification

e Origin of widened ion pedestal

e Conclusion




* RMP-hysteresis on confinement recovery
v’ Hysteresis in RMP-ELM suppression
* IgjmpiN = IrmpouT- KSTAR #25613

* Enables confinement recovery. 2.0 .,
- By IOWEfing IRMP upto IRMP,OUT' 1 5_-\ ’
— B
* Real-time (RT) RMP control f; 1.0-

v’ Ixmp for edge optimization

0.5
e Sufficient to sustain suppression. S H\ I
* Minimal to maximize confinement. 0.0 el Il | L A ek WWM'-'--“
-> By real-time adaptive control. ' 5 6 7 8 9 10 11

Time [s]
[RMP hysteresis at KSTAR, #25613]
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Adaptive ELM control relies on simple concept, but its successful utilization is

not trivial because of system discontinuity (Igrmp v # Irmp,0uT)

* Adaptive ELM control using RMPs

v' Igmp control with ELM detection [R. Shousha, APS-DPP 21]

¢ ELMV -> IRMP T.
e ELM-free > IRMP l.

* Convergence problem with bifurcation

v’ Discontinuous transition of system.

Igmp N # Irmp,ouUT-
* Oscillatory behavior in control.

* Poor convergence.
—> Obstacles for fast convergence.

However, adaptive control is successful
by resolving this issue

Time
[Schematic of adaptive ELM control]
A
—Irmp,IN
R S i VL
>
Time

[Schematic of adaptive ELM control]




Adaptive ELM control successfully optimizes the RMP level, maximizing the

confinement recovery while maintaining ELM suppression

* ELM suppression in KSTAR with adaptive ELM control

v" Recovered initial Hgg loss up to 60% (G = HggﬁN/qgs, 45%).
v' Fast convergence within 4 iterations (~5 s).
v" Well sustained ELM suppression.

KSTAR #26004
1.2
—x-k‘f—x —————————————————————————————————————————————— 1.0
* 3‘»*“&
\\\ xﬁ ______ ey 0.9
x H 5N i e A .
0.8 %08 e %, f‘*"xx Koot T € 60% confinement recovery
% B A S 0.7
= SN
= Igwe /7 N
0.4 - . ) . NIV AR - [ <€— Fast convergence of RMP level
\'hl'll il I\I I||| \||||l|| | I
WWW €——— Sustained suppression

A !’ “]|
0.0 (LK \.H“Il“ll“ln lllnu . IM

5 6 7
[Overview of discharge #26004] Tlme [s]




Successful control convergence is due to weakened discontinuity of

RMP-hysteresis: Easier re-access to the ELM suppression

1.0 KSTAR #26004

Changes in Irmp In/ouT during control SR

v’ Igmpn: 4.6 — 3.5 KA (dominant).
v IRMP,OUT: 3.3 - 3.5 KA.
v’ Discontinuity |[Igxmp v — Irmp out| !-

IRMP [a.u.]

* Effect of decreasing Igyp in

v’ Easier re-suppression. Time [s]
v" Fast convergence and short ELMy period. [Overview of discharge #26004]
A With constant Igypin A With decreasing Trmp.IN

- Focusing on profile dynamics in 15t iteration.

+ IrMPIN
Irmp out

_eLvs IR I

[Effect of decreasing Irymp v ON control convergence]
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* Adaptive ELM control using RMPs = Successful control convergence due to decreasing Iyyp iy -
 Widened ion pedestal and increased pedestal response
 Enhanced pedestal recovery and field amplification

e Origin of widened ion pedestal

e Conclusion




 Widening of ion pedestal

v lon pedestal trace.

e 532 2> ELMy, IRMP T.
- Entering ELM-free with decreasing height.

21.11.11 APS - DPP
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[Time trace of ion radial profiles, #26004] IpN
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During ELM suppression periods, ion pedestal shows wider structure than

ELMy phase.

« Widening of ion pedestal Ls
v’ lon pedestal trace. ;: 0.5
. 536.3 :ELMy, Ixyp 7. -
- Entering ELM-free with decreasing height. 0.0
5 6 8
* 6.6 > 7.1s: ELM-free Time [s]
- Saturation with increasing width. 1.0 - - - )
(Decreased gradient) 6.3s (ELMy,4.1 kA)
S J i
2, 0.5 R
& —_—
! t
6.6s (ELM-free, 5.5 kA)
7.1s (ELM-free, 5.5 kA)
0.0 - :

0.8 0.9 1.0
[Time trace of ion radial profiles, #26004] wN




During ELM suppression periods, ion pedestal shows wider structure than

ELMy phase.

* Widening of ion pedestal \lli
v’ lon pedestal trace. i 0.5} .- v
e 532632 ELMV, IRMP T.
- Entering ELM-free with decreasing height. 0_05 c -
* 6.6 > 7.1s: ELM-free Time [s]
- Saturation with increasing width. 1.0 - - I;ZLM A
(Decreased gradient) b ] { + 5.3s ( y,0 kA)
|
e 2>7.1s>7.7s: ELM-free, IRMP l. — + el
- Increasing pedestal height/width. E
(Same gradient) — 0.5 ) b
b

h
» Wider lon pedestal during ELM-free state. 2 16 (ELM-free, 5.5 kA;\

7.7s (ELM-free, 3.5 kA)

0.0

"0.8 0.9 | 1.0
YN




v’ Variation of pedestal height to RMP (h' = —dh/dIxpmp) 5_

3 Ramp-up phase 7.1 down 7.7
1.0 — . o h—
Channel (h’) Ramp-up Ramp-down i
1
5 5 — I
N ped ~105/m3A ~1015/m3A 3 o0s| i
Teped 0.06eV/A  0.06eV/A = i
T; 0.06 eV/A 0.09 eV/A 50% 1 0.0 L b ‘ : - :
i,ped / / 5 6 | - 2
2.0 1.0 1.0 Time [s]

Te,ped [keV]

Ti,ped [keV]

Ine:pedl [1619'7.1-3]

ELM-free1

1.8}

0.8¢ Ramp-down

1.6} ‘ Boosted T; ;¢4 during

0e ELM-free state.
4 ® ELMy . !Vlay be explained by wider
., X Suppressed 04 ion pedestal [ 1.

0O 1 2 3 4 5 6 0O 1 2 3 4 5 6
[Time trace of pedestal height , #26004] IRMP [kA]
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Pedestal recovery during ramp-down

v' Increased limit (Pedestal height: £, ,cq)

Bppeda <70 % PBM limit: ELM free.
* Wider ion pedestal 2 Enhanced limit [
* Higher pedestal with ELM-free.

v’ Faster recovery with Igyp |

* LlargerT'; eq and ') ;eq in ELM-free.
* Higher pedestal than ELMy for “same” RMP. Decreasing RMP '
- 03} ‘*---~.~,\ ( *y (Supp.) i
Y
‘ Enhanced pedestal recovery during % v,
ELM-free state by wider pedestal. X 0.21 TSy .
IncreasingRMP  ~
| ® ELMy (ELMy) ek’
0.1 * ELM-free .
0 2 q

Higher
pedestal .

[Trace of pedestal limit and height , #26004] IpMp [kA]
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* Adaptive ELM control using RMPs = Successful control convergence due to decreasing Iyyp iy -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification

e Origin of widened ion pedestal

e Conclusion




Ramp-down

5.3s
* Confinement recovery by RMP ramp-down 10 ;
v’ Confinement (Hqg) recovery by pedestal T —_ ' i
. . . S 05
* Enhanced ion recovery as main contributor. < E
I
1 |
ne,ped Te,ped Ti,ped 0.0 i
20% 13% 67% 5 Time [s]
[Time traces of H98, #26004]
v" Benefit from enhanced pedestal recovery u
* Improved Sy path in ELM-free state. 2.0 e ]

With faster
recovery |

 Higher confinement by smaller Igyp !. .
- Higher: Increased B, ,¢q limit 1.6 e <

Bn

- Smaller: Faster pedestal recovery
'® ELMy

* ELM-free , :
0 2 4 6

[Traces of By vs Ixmp, #26004] [ o ME l{A

‘ Boosted confinement recovery (>50%).

1.2
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Shot comparison clearly shows that “boosted” confinement recovery is

outcome of widened ion pedestal

* Recovery without pedestal broadening M"‘* -------------
v' Without wider ion-pedestal E - 5.55 (ELMy, 1.9 kA) \
= 0.3 ' e
* If noion-pedestal widening = — 6.2s (ELMy, 3.2 kA)
- No favorable state during ELM-free. : g';: :Em:ﬁz ;2 t:;
0.0 ' —
v Reduced confinement recovery 0.6 3)5 1.0
* No boosted or bonus recovery. 51 [Time traces of ion pedestal, #28393]
. : .‘i«‘%
‘ Boosted recovery by widened ion pedestal. “\’\
Z Tl
Q 1.8 B -
' ® ELMy N:m
* ELM-free recovery only
1.5 . 1 . 1 . 1 . 1

0 1 2 3 4 5
[Traces of By vs Ixmp, #28393] Irmp [KA




Enhanced pedestal recovery amplifies the RMP response, resulting in easier

ELM suppression re-entrance with smaller RMP current

* Decreased Igyp v for ELM suppression
v’ Suppression entry at field threshold (8B,.;)

* Perturbed field (SBI.) by IRMP'
* Suppression for 6B = 6B ., [J.-K.Park 13].
* OB, = 20 Gin experiment = Red line.

v Amplified 631- by Bp,ped

* Same 6B, with smaller Igyp.
* Larger B, seq at re-suppression.

® IRMP,IN : 4.6 9 3.6 kA.

- IRMP,IN ) by wider ion pEdEStaI.

@ ELMy % ELM-suppressed
KSTAR #26004, 5B,

0.4 -
pression

[G]

ﬁ p.ped

4.6 > 3.6 kA |——

IPEC

Igmp [kA]

[Time traces of pedestal, #26004]




Overall, widened ion pedestal facilitate the adaptive ELM control method by

boosting the confinement hysteresis and reducing the system discontinuity

e Overall effect of ion pedestal broadening on adaptive ELM control
Fast and stable control

Standard pedestal recovery By Plasmajresponse

Easier re-ELM
suppression

Larger pedestal Larger 6B,
recovery at pedestal

Pedestal
recovery

________________

Strong and fast
confinement optimization




* Adaptive ELM control using RMPs = Successful control convergence due to decreasing Iyyp iy -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification - Decreases Iyyp .

* Origin of widened ion pedestal

e Conclusion




Interpretive analysis suggests that ion pedestal broadening can be an outcome

of increased heat transport during ELM suppression phase

* Origin of widened ion pedestal

v RMP-induced transport in ELM-suppression

* ELMy : No effective change.
* ELM-free (>6.6s): Increased y; at pedestal.
- Decreased pedestal gradient and broadening.

v' Distinguished properties of RMP-induced transport

e Occurrence at ELM-free state.
* No proportionality on Igyp during ELM-free.
- Sustained pedestal gradient with Igyp .

Xi [m?/s]
N =y (o)) 00

1.0

l

" 5.3s (ELMy, 0 kA)
6.3s (ELMy, 4.1 kA)

1

t
6.6s (Supp., 5.5 kA)
7.1s (Supp., 5.5 kA)
7.7s (Supp., 3.5 kA)

0.0

0.8 0.9
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* Nonlinear MHD simulation with decreasing I'nyp
v' TM1 simulation [0. yu 2012, . Hu 2020]

T. & n, +island physics.
Tepea T and no width extension by Ipyp .
=> So, not by T, widening via thermal coupling.

v" JOREK simulation [G. Huijsmans 2009]

T;e & e + NTV, island/kink physics.

Recently, reasonable validation [s. K. Kim submitted].
Ti,ped and VTi,ped T by IRMP l.

= Further analysis is ongoing.

Additional transport mechanism may be required to
explain pedestal gradient behavior.

0.0

S 1.6

1.2

Preliminary nonlinear MHD simulation on RMP response shows that classical
transport may have difficulty in explaining insensitivity of y; on Inmp
1.0 r

™1

Decreasing Igpmp

JOREK

Decreasing Igmp

0.90 0.95 1.0
Py
[Numerically prediction on T profiles]

- Expériment-
- JOREK

o 1 2 3 4 5 6
[Recent numerical benchmark] I kA




Immediate occurrence of edge turbulence is observed after entering

ELM suppression

* QOccurrence of fluctuations

v Measured fluctuation

* Immediate occurrence at ELM-free.
* ECEI(OT,), BES (8n,), Mirnov (8B,,,;) and CSS.

* Properties of edge turbulence

v Frequency range

* 0T, and dn, : 30-80 kHz (longer, kpy, < 1).
* 0Bp and CSS: 200-400 kHz (shorter, kp; > 1).
- More than one different fluctuations.

S o
=)

Frequency [MHz] Frequency [MHz] Frequency [MHZz]

0. O L s o B
6.0 6.5 7.0

[Time traces of measured fluctuations] 11me [s]

e
3
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Edge localized fluctuation exhibits similar trends with ion diffusivity,

suggesting the ion-scale turbulence as a main contributor to pedestal widening

* Properties of edge turbulence

v’ Radial range
e O0T.anddn,: ¢y >0.9.

* Correlation of edge turbulence with I'pyp

v No reduction by Igyp .

e Same for ion diffusivity.
-> Suggesting it as a main contributor.

v Rapidly decreasing with losing suppression (at 7.8s) . 1o '
: i ' ' 1
i ELM suppression | ||

* Immediate RMP ramp for maintain favorable wide pedestal.
- RT-Adaptive control is key.

8B, | No decreasing | '

bt
(=]




Linear gyro-kinetic simulation suggests the occurrence of turbulence

but detailed numerical analysis is needed for complete explanation.

B
N

5.3s (ELMy, 0 kA)
6.3s (ELMy, 4.1 kA)
6.6s (Supp. 5.5 kA)
7.7s (Supp. 3.5 kA)

* Linear CGYRO calculation (y5~0.96) [J. Candy 16]
v’ Onset (Y/Yexg>1) at ELM free (> 6.6s).

* Mainly due to reduced Yg«g-

* ITG/TEM branch.
-> Closer to electron channel fluctuation.

Growth rate y/ygx
=
—>

0 L 1
T . 0.0 0.5 1.0 1.5
e Limitation of the linear results kyp
yr's
v" Inconsistency in electron heat fluxes. 0.10 :
. : L v 5.3s (ELMy, 0 kA)
No evidence for widening of electron pedestal. 'E . ggs {E'—MV: 251 EQ))
v" Importance of nonlinear study w/ RMPs. 5 | 7:1: (SEBB 5.5 kA) ‘l’
* Interactions with kink/island [R. Hager 20]. — 7.7s (Supp. 3.5 kA)
m 0.00
* Non-local effect [S. Taimourzade 19]. X
3
-0.05

0.9 1.0
[Growth rate and ExB shearing rate, CGYRO] ]I)N

o
oo




FY20-21 database suggest that the favorable effect of turbulence can vary

depending on edge conditions.

* Edge gas level and boosted recovery
v' Weakening Ay with separatrix D, level.

-> Turbulence may be reduced with edge density, collisionality.

v No clear dependency with density pedestal height (Mpeq )

0.3
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#26XxxX/#28XXX
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Igmp [KA]

2.0

1.5

1.0
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2.0 \ ]
Boosted
.......... ., recover 1
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Favorable edge conditions for these
. effect has to be investigated for the
projection to future devices.




* Adaptive ELM control using RMPs = Successful control convergence due to decreasing Iyyp iy -
 Widened ion pedestal and increased pedestal response - Enhanced pedestal recovery.
* Enhanced confinement recovery and field amplification - Decreases Iyyp .

* Origin of widened ion pedestal - Highly correlates to ion-scale turbulence.

e Conclusion




Adaptive ELM control paves new strategy to optimize the pedestal via 3D field,

revealing new physics of edge-turbulence and its favorable aspects.

e Successful demonstration of adaptive ELM control in KSTAR

v ELM-free state with optimized confinement.

 Widened ion pedestal plays key role in control optimization.

v Boosted recovery and good convergence.

* RMP-induced ion-scale turbulence highly correlates to ion pedestal
v" Similar trend in fluctuation and numerical prediction.

* Adaptive scheme is an effective way to utilize its favorable effect

v" Immediate RMP ramp to sustain the turbulence and wide pedestal.

= Adaptive ELM control is an effective way to utilize RMP-induced turbulence.
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Tpeq [keV] [a.u.] Ixmp [KA]

Ne ped [10%°m™3]

Backup — Time traces
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* Pedestal degradation by island flattening

v’ Island flattening
* Profile flattening by (m, n) island at g = m/n.
* Degradation of pedestal height 2> ATpedm/n = VT ped Wm/n
* lIsland width W, ,, and pedestal gradient VT 4.

v Net pedestal degradation

* Accumulation of AT ,q m/n by island in pedestal region.

* qvalue at pedestal top, qpeq- AT pedn = Z AT pedm/n = 2 VT ped Win/n
* Lower bound of islands m = nqpeq. M2qped Mm2Qped

v’ Response of T4 to Igyp

* Increases with larger VT ,.4 and smaller q 4. pedn o ; z n
~ VT pe
*  Wider pedestal width - Smaller g4 Algmp MmEqed Algmp

- Larger AT ;eq/Algmp

21.11.11 APS—-DPP



 ELMy vs ELM-free

v' Similar discharge with RMP-ramp (same heating, BT).
v No suppression due to unfavorable condition for Supp. window.
v’ #29260 (no Supp.) vs #29271 (Supp. at 5.3 s)

15 T
4 . . . . _ : i - ?:" —— 4.6s ELMy
- = 29260 e 10l _
4.6 g
en 31 4 | § 0.5 \
| z
E y: ® |#29260
o 5l ]
o . _ 1.5 T
Anl ‘ ] = 46sELMY  Widening
S 1- \ 52 %% 2 10
O_uU aac R ACNRREN RN AT £ \\
4.0 4.4 4.8 5.2 5.6 o 129271 X
Time [S] 0.6 (ivi 1.0
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Backup — Other adaptive ELM controls

KSTAR #28454
2.0

Ipmp

KSTAR #28453

2.5

20 25 30 Pn

Dinif
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Backup — Heat diffusivities and CGYRO real frequencies

20 #26004 2 #26004
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Backup — Boosted confinement recovery vs pedestal density / separatrix Da
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Backup - Decreased oscillatory RMP control: Lower bound

* Decreased oscillatory amplitude during ELM control

19 KSTAR #26004 v 8 4own bY ELM controller scheme.
™\ * Controller limits the lower Igyp limit
S RS o Ijimic as the level where previous
X " e ’,\’l-xr* Wi
| “Hog A TN T suppression loss occurs (I},ss)-

O 8 W Xxﬁj }S( /" x X
— | '\ — ) * There is “40ms delay in detecting
c:é | Gl suppression loss, further decrease
- of Igmp by 0.06kA/turn after

0.4 suppression loss. So,

Ilimit ~ Iloss + 0.07

 ELM suppression loss occurs even in
0.0 flat RMP phases. (so “marginal”).
—> Successful approach to achieve

marginal RMP level for suppression.

WﬂWWM o Bggun ~ 0.07 X 3 ~ 0.2




Backup - Disappearance of bifurcative of pedestal change

* Marginally suppressed ELM without bifurcative change *
v’ Suppression loss and re-entering without bifurcative pedestal behavior. = 3 .
v No considerable change in pedestal. = Possibly, no island physics. S , SNy
v' They are “very” stabilized in terms of linear PBM theory. R 2328 mz éigEE'—L'\ICAVy
v’ Decreased ~300kHz fluctuation before suppression losses. 14~ - - 8850 ms, 3rd Supp.
— 9650 ms, 4th ELMy
KSTAR #26004 ol - 9750 ms, 4th Supp. .
L0 . 00 02 04 06 08 10
“ ||l e— EMm suppression loss —> | wy [a.u.]
|
0.5 :

This mode may contribute to ELM suppression
by a mechanism other than a change in mean profile.

MC ~300 kHz !

2 TTS - N

Suggest additional contributor for ELM-free.




 ELM suppression re-entry without changes in pedestal
v’ Transition between ELMy and ELM-free state.

* No considerable change in pedestal at 3" and 4t" ELM
suppression entry and exit.
—> Additional suppression mechanism other than profile effect.

n, [10°m™3]

. 0{).{) 0.2 0:4 0:6 0:8 1.0
* Correlation between turbulence and ELM-free state. -

. . . [Time traces of pedestal, #26004]
v Returning ELMs with turbulence disappearances. P

1.0 T T
« Strong correlation with 6 B fluctuation. osl D, 2nd 3¢ 4“‘;
* Measured at both LFS and HFS. . OMMMMW —_ ,glwllmwuﬂ__
-> Possible direct contributions of edge turbulence on 3B fluctuation \ '
the ELM suppression. 0.5t level -
0.0 . L .
6 7 8 9 10

[Time traces of fluctuation level, #26004]  Time [s]
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Backup — CSS signal

* (CSS signal (kp~18/cm)

v’ Similar frequency to MC signal

400

CSS FFT :: 26004 - Ch2

b tl= 5000'1 s ' Sampl.es per FFT = 16384
300 -15 t=6.7999 s FFT window [ms] = 1.64
-20 Freq res. [kHz] = 0.61

LJ g Window overlap =50 %

-25 J' [ FFT time step [ms] = 0.82
-30 J,!' | Nyquist freq [kHz] = 5000
N Mp M (.q MW& )/ Ww w)*w Hanning window

I
ﬂ; i M Smoothing pts (freq) = 5

i b
| Jv | : H
-40 u" I 1 1 1 l L 1 Il I I 1 L l 1 1 L l L 1 I L L 1 I 1 SmOOthIng pts (tlme) = 5

-600 -400 -200 0 200 400 600
Frequency [kHz]

200

[kHz
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Backup — Mironov signal and FIDA

* Increased edge turbulence after RMP-ELM suppression

v Mironov signal: Possibly, strong EM fluctuation. (~300kHz)
v Small correlation between spectral power and fast ion density.
- Less likely to be core Alfven-eigen mode.

2.5 Q— Blip
Pl IRMP
2.0 1 LA
© i «—— ELM suppression
—_— 1.5_ v
= ",w" MC2P12 [6Bp01]
= o (> 50 kHz)
H*m
\\JN LA n
0.5 ‘
| ] |
U‘ |l‘[r” -k \.J—J‘w"!x"rﬁ’ml’:.
0 | | | |

) T T
6.00 6.25 6.50 6.75 7.00 7.25 7.50 7.75
Time [s]




Backup - Mironov signal (for n=2 case)

e MC2P12 signal
v’ Broad signal occurs at 70-400 kHz range.

2.0 -

f 5 600
—_ 1.5 m ‘t IN —
x — = 400
« LB
= o TS | IMM Igmp i

0.5— <— M suppression 200

' | MC2P12 [6B ]

IV AR (> 50 kHz)
0 I T I 0

6.40 6.75 7.1 7.45 7.8 8.15 8.50
Time [s]




« Before ELM suppression (phase 1) —\ ﬂ
v’ Decrease in both T; and T, pedestal height % _ /
* Similar behavior of T ,eq and T'¢ peq- Z D
. ] . a
* Decreasing pedestal height with AT yeq/Algup~ — 0.063 eV/A. , ,
* Recovery phase (phase 3) / /\
v’ Decoupled T iped and T¢ eq pedestal height s / \
* Similar behavior of T ,.q With phase 1 ( ). e .
* ~50% larger response of T ,eq (~0.092 eV/A). 15 - T .
Phase 1 h 2 1 3 ,A
v’ Increased AT} Al 2
1,ped/ RMP % ! \J\/_/’\/\,/\/ ]
* Not a result from change in thermal coupling between ion =
and electron (X neVe peq) [ ]. s . . | .
5.5 6.0 6.5 7.0 1.5 8.0

* Indicating additional transport “mainly” on ion pedestal. Time [s]

[Time trace of pedestal height, #26004]
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 Comparison of phases

Phase 1 Phase 2 Phase 3
VT; : Mainl turbulen
Igmp Increased - Decreased > VT peq : Mainly by turbulence
_ (turbulence transport)
Fluctuation level - Increased -
T ped Decreased - Increased 2 Tipea :Mainly by Igyp
VT ped - Decreased - (collisional transport?)

* Effect of edge turbulence on ion-pedestal
v' Widened pedestal width & decreased VT ;¢q -

v’ Increased |AT;peq/Alrmp|-
* If AT; ,eq/Alrmp by collisional transport [ ]. -> Can be increased with pedestal width.

v' Weak effect on electron pedestal width.
* Not clear due to limits in spatial resolution. —> But statistically no large variation.
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