

Mechanical and Aerospace Engineering

Optimizing edge confinement and stability via adaptive ELM control using RMPs

S.K. Kim^{1,2}, R. Shousha¹, S.H. Hahn³, A.O. Nelson¹, J. Wai¹, S.M. Yang², J.-K. Park², R. Nazikian², Q. Hu², N. Logan ⁴, Y.M. Jeon³, Y. In⁵, J.H. Lee³, J. Kim³, Y.-S. Na⁶, and E. Kolemen^{1,2}

¹Princeton University, USA

²Princeton Plasma Physics Laboratory, USA

³Korean Fusion Energy Research Institute, KFE, Korea

⁴Lawrence Livermore National Laboratory, LLNL

⁵Department of Physics, UNIST, KOREA

⁶Department of Nuclear Engineering, Seoul National University, KOREA

2021.11.11

E-mail: sk42@princeton.edu

RMPs are promising method to stabilize the ELM crash, however there is remaining challenges for its application on ITER or future devices

- Challenges in ELM control via RMP
 - ✓ Less sustainability by small window.
 - ✓ Loss of plasma confinement.
- Real-time pedestal optimization with ELM control

- ✓ RT adaptive ELM control.
 - Keep ELM-free.
 - Recovers confinement (>60%).

Optimized ELM-free state

One of solutions for existing challenges.

2/21

Ion pedestal widening is key of effective pedestal optimization using adaptive ELM control

- Key of successful pedestal optimization
 - ✓ Ion pedestal widening
 - In ELM-suppressed state.
 - ✓ Contribution to adaptive control
 - Stronger confinement recovery (>50%)
 - Faster control convergence.

This talk introduces...

- Principle of adaptive control.
- Role of widened ion-pedestal.
- Origin of pedestal widening.

Contents

- Adaptive ELM control using RMPs
- Widened ion pedestal and increased pedestal response
- Enhanced pedestal recovery and field amplification
- Origin of widened ion pedestal
- Conclusion

Adaptive ELM control is effective approach to achieve and sustain steady-state ELM-free high confinement plasma

- RMP-hysteresis on confinement recovery
 - ✓ Hysteresis in RMP-ELM suppression
 - $I_{\text{RMP,IN}} \geq I_{\text{RMP,OUT}}$.
 - Enables confinement recovery.
 - \rightarrow By lowering $I_{\rm RMP}$ upto $I_{\rm RMP,OUT}$.
- Real-time (RT) RMP control
 - ✓ $I_{\rm RMP}$ for edge optimization
 - Sufficient to <u>sustain</u> suppression.
 - Minimal to maximize confinement.
 - → By real-time adaptive control.

[RMP hysteresis at KSTAR, #25613]

Adaptive ELM control relies on simple concept, but its successful utilization is not trivial because of system discontinuity ($I_{\rm RMP,IN} \neq I_{\rm RMP,OUT}$)

- Adaptive ELM control using RMPs
 - ✓ $I_{\rm RMP}$ control with ELM detection [R. Shousha, APS-DPP 21]
 - ELMy $\rightarrow I_{RMP} \uparrow$.
 - ELM-free $\rightarrow I_{\rm RMP} \downarrow$.
- Convergence problem with bifurcation
 - ✓ Discontinuous transition of system.
 - $I_{\text{RMP,IN}} \neq I_{\text{RMP,OUT}}$.
 - Oscillatory behavior in control.
 - Poor convergence.
 - → Obstacles for fast convergence.

However, adaptive control is successful by resolving this issue

5/21

Adaptive ELM control successfully optimizes the RMP level, maximizing the confinement recovery while maintaining ELM suppression

ELM suppression in KSTAR with adaptive ELM control

- ✓ Recovered initial H_{98} loss up to 60% ($G = H_{98}\beta_N/q_{95}^2$, 45%).
- **✓** Fast convergence within 4 iterations (~5 s).
- ✓ Well <u>sustained</u> ELM suppression.

Successful control convergence is due to weakened discontinuity of RMP-hysteresis: Easier re-access to the ELM suppression

- Changes in $I_{\text{RMP,IN/OUT}}$ during control
 - ✓ $I_{\text{RMP,IN}}$: 4. 6 \rightarrow 3. 5 kA (dominant).
 - ✓ $I_{\text{RMP.OUT}}$: 3.3 \rightarrow 3.5 kA.
 - ✓ Discontinuity $|I_{RMP,IN} I_{RMP,OUT}| \downarrow$.
- Effect of decreasing $I_{\rm RMP,IN}$
 - **✓** Easier re-suppression.
 - ✓ Fast convergence and short ELMy period.
 - Focusing on profile dynamics in 1st iteration.

[Overview of discharge #26004]

[Effect of decreasing $I_{\rm RMP,IN}$ on control convergence]

7/21

Contents

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response
- Enhanced pedestal recovery and field amplification
- Origin of widened ion pedestal
- Conclusion

During ELM suppression periods, ion pedestal shows wider structure than ELMy phase.

- Widening of ion pedestal
 - ✓ <u>lon pedestal</u> trace.
 - 5.3 \rightarrow 6.3 \rightarrow : ELMy, $I_{\rm RMP}$ \uparrow .
 - Entering ELM-free with decreasing height.

During ELM suppression periods, ion pedestal shows wider structure than ELMy phase.

- Widening of ion pedestal
 - ✓ <u>lon pedestal</u> trace.
 - 5.3 \rightarrow 6.3 \rightarrow : ELMy, $I_{\rm RMP}$ \uparrow .
 - Entering ELM-free with decreasing height.
 - \rightarrow 6.6 \rightarrow 7.1s : ELM-free
 - Saturation with increasing width.
 (Decreased gradient)

During ELM suppression periods, ion pedestal shows wider structure than ELMy phase.

- Widening of ion pedestal
 - ✓ <u>Ion pedestal</u> trace.
 - 5.3 \rightarrow 6.3 \rightarrow : ELMy, $I_{\rm RMP}$ \uparrow .
 - Entering ELM-free with decreasing height.
 - \rightarrow 6.6 \rightarrow 7.1s : ELM-free
 - Saturation with increasing width.
 (Decreased gradient)
 - \rightarrow 7.1s \rightarrow 7.7 s: ELM-free, $I_{\rm RMP} \downarrow$.
 - Increasing pedestal height/width.(Same gradient)
 - **Wider Ion pedestal during ELM-free state.**

During ramp-down (ELM-free) periods, ion pedestal height shows larger variation to RMP strength than ramp-up (ELMy) phase.

21.11.11 APS – DPP 9/21

 I_{RMP} [kA]

[Time trace of pedestal height, #26004]

Changed ion pedestal behavior in suppression periods lead plasma to the new state during RMP ramp down, affecting pedestal recovery

- Pedestal recovery during ramp-down
 - ✓ Increased limit (Pedestal height: $\beta_{p,ped}$)
 - $\beta_{p,ped}$ < 70 % PBM limit: ELM free.
 - Wider ion pedestal → Enhanced limit [T. Osborne 09].
 - Higher pedestal with ELM-free.
 - ✓ Faster recovery with $I_{\rm RMP} \downarrow$
 - Larger $T'_{i,ped}$ and $\beta'_{p,ped}$ in ELM-free.
 - Higher pedestal than ELMy for "same" RMP.

Enhanced pedestal recovery during ELM-free state by wider pedestal.

21.11.11 APS – DPP 10/2

Contents

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification
- Origin of widened ion pedestal
- Conclusion

Enhanced pedestal recovery results in net confinement recovery more than just returning to previous ELMy state by lowering RMP

- Confinement recovery by RMP ramp-down
 - ✓ Confinement (H_{98}) recovery by pedestal ↑
 - Enhanced ion recovery as main contributor.

$n_{\mathrm{e,ped}}$	$T_{\rm e,ped}$	$T_{i,ped}$
20%	13%	67%

- ✓ Benefit from enhanced pedestal recovery
 - Improved β_N path in ELM-free state.
 - Higher confinement by smaller $I_{\rm RMP} \downarrow$.
 - Higher: Increased $\beta_{p,ped}$ limit
 - Smaller: Faster pedestal recovery
 - Boosted confinement recovery (>50%).

Shot comparison clearly shows that "boosted" confinement recovery is outcome of widened ion pedestal

- Recovery without pedestal broadening
 - ✓ Without wider ion-pedestal
 - If no ion-pedestal widening
 - → No favorable state during ELM-free.
 - ✓ Reduced confinement recovery
 - No boosted or bonus recovery.
 - **B**oosted recovery by widened ion pedestal.

Enhanced pedestal recovery amplifies the RMP response, resulting in easier ELM suppression re-entrance with smaller RMP current

- Decreased $I_{\text{RMP,IN}}$ for ELM suppression
 - ✓ Suppression entry at field threshold ($\delta B_{\rm r,th}$)
 - Perturbed field ($\delta B_{
 m r}$) by $I_{
 m RMP}$.
 - Suppression for $\delta B_{
 m r} \geq \delta B_{
 m r,th}$ [J.-K.Park 18].
 - $\delta B_{\rm r,th} \approx 20~{
 m G}$ in experiment ightarrow Red line.
 - ✓ Amplified $\delta B_{\rm r}$ by $\beta_{\rm p,ped}$
 - Same $\delta B_{\rm r}$ with smaller $I_{\rm RMP}$.
 - Larger $\beta_{p,ped}$ at re-suppression.
 - $I_{\text{RMP.IN}}: 4.6 \rightarrow 3.6 \text{ kA}.$
 - $ightharpoonup I_{\text{RMP,IN}} \downarrow$ by wider ion pedestal.

21.11.11 APS – DPP 13/2

Overall, widened ion pedestal facilitate the adaptive ELM control method by boosting the confinement hysteresis and reducing the system discontinuity

Overall effect of ion pedestal broadening on adaptive ELM control

14/21

Contents

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification \rightarrow Decreases $I_{\text{RMP,IN}}$.
- Origin of widened ion pedestal
- Conclusion

Interpretive analysis suggests that ion pedestal broadening can be an outcome of increased heat transport during ELM suppression phase

- Origin of widened ion pedestal
 - **✓** RMP-induced transport in ELM-suppression
 - ELMy : No effective change.
 - ELM-free (>6.6s): Increased χ_i at pedestal.
 - → Decreased pedestal gradient and broadening.

- ✓ Distinguished properties of RMP-induced transport
 - Occurrence at ELM-free state.
 - No proportionality on I_{RMP} during ELM-free.
 - \rightarrow Sustained pedestal gradient with $I_{\rm RMP} \downarrow$.

21.11.11 APS – DPP

15/21

Preliminary nonlinear MHD simulation on RMP response shows that classical transport may have difficulty in explaining insensitivity of $\chi_{\rm i}$ on $I_{\rm RMP}$

- Nonlinear MHD simulation with decreasing $I_{\rm RMP}$
 - ✓ TM1 simulation [Q. Yu 2012, Q. Hu 2020]
 - $T_{\rm e}$ & $n_{\rm e}$ + island physics.
 - $T_{\rm e,ped}$ \uparrow and no width extension by $I_{\rm RMP}$ \downarrow .
 - \rightarrow So, not by $T_{\rm e}$ widening via thermal coupling.
 - ✓ JOREK simulation [G. Huijsmans 2009]
 - $T_{\rm i,e}$ & $n_{\rm e}$ + NTV, island/kink physics.
 - Recently, reasonable validation [S. K. Kim submitted].
 - $T_{i,ped}$ and $\nabla T_{i,ped} \uparrow \text{ by } I_{RMP} \downarrow$.
 - → Further analysis is ongoing.

Additional transport mechanism may be required to explain pedestal gradient behavior.

21.11.11 APS – DPP

 $16/2^{1}$

Immediate occurrence of edge turbulence is observed after entering **ELM** suppression

Occurrence of fluctuations

- ✓ Measured fluctuation
 - Immediate occurrence at ELM-free.
 - ECEI ($\delta T_{\rm e}$), BES ($\delta n_{\rm e}$), Mirnov ($\delta B_{\rm pol}$) and CSS.

Properties of edge turbulence

- ✓ Frequency range
 - $\delta T_{\rm e}$ and $\delta n_{\rm e}$: 30-80 kHz (longer, $k
 ho_{\rm s} < 1$).
 - $\delta B_{
 m pol}$ and CSS: 200-400 kHz (shorter, $\,k
 ho_s>1$).
 - → More than one different fluctuations.

[Time traces of measured fluctuations]

Edge localized fluctuation exhibits similar trends with ion diffusivity, suggesting the ion-scale turbulence as a main contributor to pedestal widening

- **Properties of edge turbulence**
 - ✓ Radial range
 - $\delta T_{
 m e}$ and $\delta n_{
 m e}$: $\psi_{
 m N}$ > 0.9.
- Correlation of edge turbulence with $I_{\rm RMP}$
 - ✓ No reduction by $I_{\rm RMP} \downarrow$.
 - Same for ion diffusivity.
 - → Suggesting it as a main contributor.
 - Rapidly decreasing with losing suppression (at 7.8s).
 - Immediate RMP ramp for maintain favorable wide pedestal.
 - → RT-Adaptive control is key.

[Time traces of measured fluctuations]

Linear gyro-kinetic simulation suggests the occurrence of turbulence but detailed numerical analysis is needed for complete explanation.

- Linear CGYRO calculation ($\psi_{\rm N}{\sim}0.96$) [J. Candy 16]
 - ✓ Onset $(\gamma/\gamma_{E\times B}>1)$ at ELM free (> 6.6s).
 - Mainly due to reduced $\gamma_{E\times B}$.
 - ITG/TEM branch.
 - → Closer to electron channel fluctuation.
- Limitation of the linear results
 - ✓ Inconsistency in electron heat fluxes.
 - No evidence for widening of electron pedestal.
 - ✓ Importance of nonlinear study w/ RMPs.
 - Interactions with kink/island [R. Hager 20].
 - Non-local effect [S. Taimourzade 19].

FY20-21 database suggest that the favorable effect of turbulence can vary depending on edge conditions.

- Edge gas level and boosted recovery
 - ✓ Weakening $\Delta \beta_N$ with separatrix D_α level.
 - → Turbulence may be reduced with edge density, collisionality.
 - \checkmark No clear dependency with density pedestal height ($n_{
 m ped}$).

Favorable edge conditions for these effect has to be investigated for the projection to future devices.

20/21

Contents

- Adaptive ELM control using RMPs \rightarrow Successful control convergence due to decreasing $I_{\text{RMP,IN}}$.
- Widened ion pedestal and increased pedestal response → Enhanced pedestal recovery.
- Enhanced confinement recovery and field amplification \rightarrow Decreases $I_{\text{RMP,IN}}$.
- Origin of widened ion pedestal → Highly correlates to ion-scale turbulence.
- Conclusion

Adaptive ELM control paves new strategy to optimize the pedestal via 3D field, revealing new physics of edge-turbulence and its favorable aspects.

- Successful demonstration of adaptive ELM control in KSTAR
 - ✓ ELM-free state with optimized confinement.
- Widened ion pedestal plays key role in control optimization.
 - ✓ Boosted recovery and good convergence.
- RMP-induced ion-scale turbulence highly correlates to ion pedestal
 - ✓ Similar trend in fluctuation and numerical prediction.
- Adaptive scheme is an effective way to utilize its favorable effect
 - ✓ Immediate RMP ramp to sustain the turbulence and wide pedestal.
 - Adaptive ELM control is an effective way to utilize RMP-induced turbulence.

21/21

Mechanical and Aerospace Engineering

Thank you

Backup – Time traces

Backup - Broadening ion pedestal can result in larger response of $T_{ m i,ped}$ to $I_{ m RMP}$

Pedestal degradation by island flattening

- ✓ Island flattening
 - Profile flattening by (m, n) island at q = m/n.
 - Degradation of pedestal height \rightarrow $\Delta T_{\text{ped,m/n}} = \nabla T_{\text{ped}} W_{\text{m/n}}$
 - Island width $W_{\mathrm{m/n}}$ and pedestal gradient ∇T_{ped} .
- ✓ Net pedestal degradation
 - Accumulation of $\Delta T_{\text{ped,m/n}}$ by island in pedestal region.
 - q value at pedestal top, $q_{\rm ped}$.
 - Lower bound of islands $m \geq nq_{\mathrm{ped}}$.
- ✓ Response of $T_{\rm ped}$ to $I_{\rm RMP}$
 - Increases with larger ∇T_{ped} and smaller q_{ped} .
 - Wider pedestal width \rightarrow Smaller q_{ped} \rightarrow Larger $\Delta T_{\text{ped}}/\Delta I_{\text{RMP}}$

$$\Delta T_{\text{ped,n}} = \sum_{m \geq q_{\text{ped}}} \Delta T_{\text{ped,m/n}} = \sum_{m \geq q_{\text{ped}}} \nabla T_{\text{ped}} W_{\text{m/n}}$$

$$rac{\Delta T_{
m ped,n}}{\Delta I_{
m RMP}} pprox
abla T_{
m ped} \sum_{m \geq q_{
m ped}} rac{\Delta W_{
m m}}{\Delta I_{
m RMP}}$$

Backup – ELM entrance and ion pedestal broadening is supported by case comparison

ELMy vs ELM-free

- ✓ Similar discharge with RMP-ramp (same heating, BT).
- ✓ No suppression due to unfavorable condition for Supp. window.
- √ #29260 (no Supp.) vs #29271 (Supp. at 5.3 s)

Backup – Other adaptive ELM controls

Backup – Heat diffusivities and CGYRO real frequencies

Backup – Boosted confinement recovery vs pedestal density / separatrix Da

Backup - Decreased oscillatory RMP control: Lower bound

Decreased oscillatory amplitude during ELM control

- \checkmark $\delta_{
 m down}$ by ELM controller scheme.
 - Controller limits the lower $I_{\rm RMP}$ limit $I_{\rm limit}$ as the level where previous suppression loss occurs ($I_{\rm loss}$).
 - There is ~40ms delay in detecting suppression loss, further decrease of $I_{\rm RMP}$ by 0.06kA/turn after suppression loss. So,

$$I_{\text{limit}} \approx I_{\text{loss}} + 0.07$$

$$\delta_{\text{down}} \approx 0.07 \times 3 \approx 0.2$$

Backup - Disappearance of bifurcative of pedestal change

Marginally suppressed ELM without bifurcative change

- ✓ Suppression loss and re-entering without bifurcative pedestal behavior.
- \checkmark No considerable change in pedestal. \rightarrow Possibly, no island physics.
- ✓ They are "very" stabilized in terms of linear PBM theory.
- ✓ Decreased ~300kHz fluctuation before suppression losses.

This mode may contribute to ELM suppression by a mechanism other than a change in mean profile.

Suggest additional contributor for ELM-free.

Multiple entry to ELM suppression reveals the possibility of additional mechanism for ELM suppression other than profile effect

- **ELM** suppression re-entry without changes in pedestal
 - ✓ Transition between ELMy and ELM-free state.
 - No considerable change in pedestal at 3rd and 4th ELM suppression entry and exit.
 - → Additional suppression mechanism other than profile effect.
- Correlation between turbulence and ELM-free state.
 - ✓ Returning ELMs with turbulence disappearances.
 - Strong correlation with δB fluctuation.
 - Measured at both LFS and HFS.
 - → Possible direct contributions of edge turbulence on the ELM suppression.

[Time traces of pedestal, #26004]

Backup – CSS signal

- CSS signal (kp~18/cm)
 - ✓ Similar frequency to MC signal

Samples per FFT = 16384
FFT window [ms] = 1.64
Freq res. [kHz] = 0.61
Window overlap = 50 %
FFT time step [ms] = 0.82
Nyquist freq [kHz] = 5000
Hanning window
Smoothing pts (freq) = 5
Smoothing pts (time) = 5

Backup – Mironov signal and FIDA

- Increased edge turbulence after RMP-ELM suppression
 - ✓ Mironov signal: Possibly, strong EM fluctuation. (~300kHz)
 - ✓ Small correlation between spectral power and fast ion density.
 - → Less likely to be core Alfven-eigen mode.

Backup - Mironov signal (for n=2 case)

MC2P12 signal

✓ Broad signal occurs at 70-400 kHz range.

Backup - Time traces of pedestal height suggest that additional transport has been introduced to the ion channel, changing the response of $T_{\rm i,ped}$ to $I_{\rm RMP}$

Before ELM suppression (phase 1)

- ✓ Decrease in both T_i and T_e pedestal height
 - Similar behavior of $T_{i,ped}$ and $T_{e,ped}$.
 - Decreasing pedestal height with

$$\Delta T_{\rm ped}/\Delta I_{\rm RMP}\sim -0.063~{\rm eV/A}$$
.

Recovery phase (phase 3)

- \checkmark Decoupled $T_{i,ped}$ and $T_{e,ped}$ pedestal height
 - Similar behavior of $T_{\rm e,ped}$ with phase 1 (\sim 0.058 eV/A).
 - ~50% larger response of $T_{i,ped}$ (~0.092 eV/A).
- ✓ Increased $\Delta T_{i,ped}/\Delta I_{RMP}$
 - Not a result from change in thermal coupling between ion and electron ($\propto n_{
 m e}
 u_{
 m e,ped}$) [L.Cui 17].
 - Indicating additional transport "mainly" on ion pedestal.

[Time trace of pedestal height, #26004]

Backup - Comparison of pedestal profiles in each phase suggests the effect of edge turbulence on the ion-pedestal: Pedestal broadening

Comparison of phases

	Phase 1	Phase 2	Phase 3
I_{RMP}	Increased	-	Decreased
Fluctuation level	-	Increased	-
$T_{ m i,ped}$	Decreased	-	Increased
$ abla T_{\mathrm{i,ped}}$	-	Decreased	-

- $\rightarrow \nabla T_{i,ped}$: Mainly by turbulence (turbulence transport)
- $\rightarrow T_{i,ped}$: Mainly by I_{RMP} (collisional transport?)

Effect of edge turbulence on ion-pedestal

- ✓ Widened pedestal width & decreased $\nabla T_{i,ped}$.
- ✓ Increased $|\Delta T_{i,ped}/\Delta I_{RMP}|$.
 - If $\Delta T_{\rm i,ped}/\Delta I_{\rm RMP}$ by collisional transport [Q. Hu 20].
- → Can be increased with pedestal width.

- ✓ Weak effect on electron pedestal width.
 - Not clear due to limits in spatial resolution.

→ But statistically no large variation.